

Mining and Metallurgical Institute named after O.A. Baikonurov Department «Metallurgy and mineral processing»

EDUCATIONAL PROGRAM

7M07201-Automation and digitalization of metallurgical processes

Code and classification of the field of 7M07 -Engineering, manufacturing and

education: construction industries

Code and classification of training directions: 7M072 - Manufacturing and processing

industries

Group of educational programs: M117 – «Metallurgical Engineering»

Level based on NQF: 7
Level based on IQF: 7

Study period: 2 years Amount of credits: 120

The educational program «7M07201 — Automation and digitalization of metallurgical processes» was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Protocol № 4 dated «12 » 12 2024 y.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Protocol No 3 dated « 20 » 12 2024 y.

Educational program «7M07201 – Automation and digitalization of metallurgical processes» was developed by Academic committee based on direction «7M072 – Manufacturing and processing industries»

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of Acade	emic Committee:			
Barmenshinova M.B.	c.t.s., associate professor	Head of the department of MaMP	K.I.Satbayev KazNRTU	to
Teaching staff:		The state of the s	Razivicio	JAY
Moldabayeva G.Zh.	c.t.s., associate professor	Professor of the Department of MaMP	K.I.Satbayev KazNRTU	Mm-
Ussoltseva G.A.	c.t.s.	Associate professor of the Department of MaMP	K.I.Satbayev KazNRTU	9-
Employers:				,
Ospanov Y.A.	d.t.s.	Head of Department of complex processing of technogenic raw materials	«Kazakhmys» Holding LLP	Ray
Students:				
Sagyndyk A.N.	bachelor of engineering and technology	2 nd year master's student	«KAZ Minerals» LLP	Coffee

Table of contents

- List of abbreviations and designations
- 1. Description of educational program
- 2. Purpose and objectives of educational program
- 3. Requirements for the evaluation of educational program learning outcomes
- 4. Passport of educational program
- 4.1. General information
- 4.2. Relationship between the achievability of the formed learning outcomes according to educational program and academic disciplines
- 5. Curriculum of educational program

List of abbreviations and designations

NCJS "Kazakh National Research Technical University named after K.I.

Satpayev" – NCJS KazNITU named after K.I. Satpayev;

TSCSE – The State compulsory standard of education of the Republic of Kazakhstan;

MES RK – Ministry of Education and Science of the Republic of Kazakhstan; EP – educational program;

IWS – independent work of a student (student, undergraduate, doctoral student); **IWSWT** – independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

WC – working curriculum;

CED – catalog of elective disciplines;

UC – university component;

CC – component of choice;

NQF – National Qualifications Framework;

IQF – Industry qualifications framework;

LO – learning outcomes;

KC – key competencies;

SDG – Sustainable Development Goals.

1. Description of educational program

The educational program 7M07201 - "Automation and digitalization of metallurgical processes" includes industry-specific, priority, fundamental, natural science, general engineering and professional training of masters in the field of automation and digitalization of metallurgical processes related to the implementation, operation and modernization of databases as the basis for product lifecycle management in relation to metallurgical processes.

It is intended for specialized training of undergraduates in the educational program 7M07201 - "Automation and digitalization of metallurgical processes" at Satbayev University and was developed within the framework of the direction "Manufacturing and processing industries".

This document meets the requirements of the following legislative acts of the Republic of Kazakhstan and regulatory documents of the Ministry of Education and Science of the Republic of Kazakhstan:

- The Law of the Republic of Kazakhstan "On Education" with amendments and additions in the framework of legislative amendments to enhance the independence and autonomy of universities dated 07/04/18, No. 171-VI;
- The Law of the Republic of Kazakhstan "On Amendments and Additions to Certain Legislative Acts of the Republic of Kazakhstan on the expansion of academic and managerial independence of higher education institutions" dated 07/04/18. No. 171-VI;
- Order of the Minister of Education and Science of the Republic of Kazakhstan dated 10/30/18 No. 595 "On approval of Standard Rules for the activities of educational organizations of relevant types";
- The State mandatory standard of higher education (Appendix 7 to the Order of the Minister of Education and Science of the Republic of Kazakhstan dated 31.10.18 №604;
- Resolution of the Government of the Republic of Kazakhstan dated
 January 19, 12, No. 111 "On approval of the Standard Rules for admission to study
 in educational organizations implementing educational programs of higher
 education" with amendments and additions dated July 14, 2016, No. 405;
- Resolution of the Government of the Republic of Kazakhstan dated
 December 27, 2019 No. 988 "On approval of the State Program for the
 Development of Education and Science of the Republic of Kazakhstan for 2020-2025";
- Resolution of the Government of the Republic of Kazakhstan dated
 31.12.2019 No. 1050 "On approval of the State Program of Industrial and Innovative Development of the Republic of Kazakhstan for 2020-2025";
- "National Qualifications Framework", approved by the protocol dated 16.06.2016 of the Republican Tripartite Commission on Social Partnership and Regulation of Social and Labor Relations;
- Industry qualification framework "Mining and Metallurgical Complex"
 No. 1 dated 30.07.2019;

- Strategy "Kazakhstan-2050": a new political course of the established state. The Message of the President of the Republic of Kazakhstan Leader of the Nation N.A. Nazarbayev to the people of Kazakhstan. Astana, 12/14/2012;
- "New development opportunities in the context of the Fourth Industrial Revolution". The Message of the President of the Republic of Kazakhstan N.
 Nazarbayev to the people of Kazakhstan. 10.01.2018;
- "The third modernization of Kazakhstan: global competitiveness". The Message of the President of the Republic of Kazakhstan N. Nazarbayev to the people of Kazakhstan. 31.01.2017

The duration of the master's degree is determined by the amount of academic credits acquired. Upon mastering the established amount of academic credits and achieving the expected learning outcomes for obtaining a master's degree, the Master's degree program is considered fully completed. The scientific and pedagogical master's degree program has at least 120 academic credits for the entire period of study, including all types of educational and scientific activities of the graduate student.

The planning of the content of education, the way of organizing and conducting the educational process is carried out by the university and the scientific organization independently on the basis of credit technology of education.

The Master's degree in scientific and pedagogical direction implements postgraduate educational programs for the training of scientific and scientific-pedagogical personnel for universities and scientific organizations with in-depth scientific, pedagogical and research training.

The content of the Master's degree program consists of:

- 1) theoretical training, including the study of cycles of basic and profile disciplines;
- 2) practical training of undergraduates: various types of practices, scientific or professional internships;
- 3) research work, including the implementation of a master's thesis, for scientific and pedagogical master's degree;
 - 4) final certification.

The content of the educational program includes the following modules: general education, general engineering, engineering and technical and professional modules.

The educational program includes the following stages of undergraduates' training: English (professional), history and philosophy of science, management of educational and organizational activities (higher school pedagogy + management psychology); theory and calculations of metallurgical thermodynamics and kinetics; MES systems; digital control systems; microprocessor process control systems; diagnostics and reliability of automation systems; special chapters on heat transfer of metallurgical processes; modern management theory; waste management in the metallurgical industry; sustainable pyroand hydrometallurgical technologies for processing mineral raw materials. Optimal control systems (with AI elements). Reliability of the control system and its elements. Resource and energy conservation in metallurgy. Automation of control system design. Distributed management systems. Methods of analysis of metallurgical processes and metallurgical products. Design of automation systems. Numerical control systems for robots. The opportunity to choose subjects from the catalog of elective subjects of Satbayev University.

Types of professional activity

Graduates of the scientific and pedagogical Master's degree program can carry out the following types of professional activities: design, production and technological, organizational and managerial, research and pedagogical.

A distinctive feature of the master's degree program is that the educational program provides knowledge, skills and abilities in the metallurgical processing of mineral raw materials (metal production, tailings disposal, basic metal production technologies), as well as modern control systems, including digital, adaptive, optimal, microprocessor, intelligent; modern methods and software tools for research and design of automation systems of technological processes; about modern technical means used in automation of production processes.

The mission of the Master's degree program is to develop students' social and personal qualities and professional competencies that enable graduates to successfully solve production, technological, organizational, managerial, and design tasks in the field of automation and digitalization of metallurgical processes.

Objects of professional activity.

The objects of professional activity of graduates are enrichment plants, enterprises of ferrous and non-ferrous metallurgy, chemical, mining, chemical and machine-building industries, branch research and design institutes, factory laboratories, higher and secondary professional educational institutions, government authorities and organizations of various organizational and legal forms.

Types and subjects of professional activity.

The subjects of professional activity are technological automated control systems, digital technologies and techniques, quality control of final products, automation and digitalization of the processes of processing raw materials and the production of metal products with increased consumer properties.

Types of economic activity: automation and digitalization of mineral processing processes, production of metals from ores and man-made raw materials.

The education level code is 07 Engineering, Manufacturing and construction industries, 7 Technical Sciences and Technologies, 7M072 - Manufacturing and processing industries.

2. Purpose and objectives of educational program

Purpose of EP: The purpose of the educational program is to master the scientific foundations of building, maintaining and operating automation systems for metallurgical processes; to study and master modern methodology, technology and tools related to the implementation, operation and modernization of databases as the basis for product lifecycle management in relation to metallurgical processes; to possess basic knowledge of sustainable technologies for processing mineral raw materials; training undergraduates in basic and specialized disciplines with the achievement of relevant competencies.

Tasks of EP:

- 1. The competence of graduates in the automation and digitalization of metallurgical processes to increase technology productivity and improve the quality of products.
- 2. The competence of graduates in the implementation of the development and implementation of technological processes for processing mineral, natural and man-made raw materials;
- 3. Graduates' competence in assessing innovation and technological risks in the implementation of new digital technologies;
- 4. The competence of graduates in the system of digitalization of metallurgical processes. Acquisition of competencies in production management at all stages of the product lifecycle;

The Master of Technical Sciences in the field of automation of production processes must solve the following tasks in accordance with the types of professional activity:

in the field of production and technological activities:

- to be a leading engineer, a leading specialist in the production department for the operation, maintenance, repair and adjustment of technical means of automated control systems for production processes in various industries, including metallurgy;

in the field of organizational and managerial activities:

- to be the head of the department for maintenance and repair of elements, devices of automated control systems of production processes in various industries, including metallurgy;

in the field of experimental research activities:

- to be a leading specialist in conducting experimental studies of industrial automation facilities, including in metallurgy;

in the field of scientific research and teaching activities:

- to be a researcher at the scientific laboratory for the research and development of modern automated control systems for production processes in various industries, including metallurgy;
- to be a bachelor's degree teacher in special disciplines in the field of automation of metallurgical production processes;

in the field of design and engineering activities:

- be a leading engineer or chief engineer of a project for the development and design of automated control systems for production processes in various industries, including metallurgy.

3. Requirements for evaluating the educational program learning outcomes

A graduate of a scientific and pedagogical master's degree must: have an idea:

- the role of science and education in public life;
- about current trends in the development of scientific knowledge;
- on current methodological and philosophical problems of natural sciences;
- on the professional competence of a higher school teacher;
- about communicative, professional and technical language knowledge, about philosophical concepts of natural science, scientific worldview.
- about the patterns of managerial activity, systemic and environmental thinking, critical thinking, leadership, teamwork and communication.
- on teaching and mentoring skills for undergraduate students.
- design, research, inventive, and innovative activities in the field of mineral processing and metallurgy;
- on the principles of automation and digitalization of metallurgical processes. *To know:*
- methodology of scientific knowledge;
- principles and structure of scientific activity organization;
- psychology of cognitive activity of students in the learning process;
- psychological methods and means of improving the effectiveness and quality of education;
- international and domestic standards, resolutions, orders, orders of higher-level and other domestic organizations, methodological normative and guidance materials related to the work performed;
- the current state and prospects of technical and technological development of enrichment and metallurgical processes, the specifics of the activities of institutions, organizations, enterprises and related industries;
- goals and objectives facing a specialist in the field of extractive and gentle metallurgy;
- modern research methods for processing and metallurgical processes, equipment operation;
- basic requirements for technical documentation of materials and products;
- rules and regulations of labor protection, issues of environmental safety of technological processes;
- methods of conducting expert assessment in the field of life safety and environmental protection;
- standards in the field of quality management;
- achievements of science and technology, advanced domestic and foreign experience in the field of mineral processing and metallurgy;
- at least one foreign language at a professional level that allows for scientific research and practical activities;
- the methodology of conducting all types of training sessions and independent work of students.

be able to:

- show communicative, professional and technical language knowledge in a foreign, professional language.
- integrate the psychological patterns of managerial activity;
- demonstrate teaching and mentoring skills to undergraduate students;
- to study empirical data based on the methodology of scientific research for the ability to write articles, collect scientometric data, and protect intellectual property using the principles of project management;
- apply and implement fundamentally new schemes for the production of metals based on saving resources and preserving the environment, in conditions of ore depletion, reducing the concentration of metals in ores;
- solve engineering calculations in the field of extractive metallurgy, thermodynamics and kinetics of pyro- and hydrometallurgical processes;
- justify the choice of processes and requirements for the processes of rectification and condensation;
- to develop and research modern technologies for the production of energy-generating, radioactive, and refractory metals; to calculate and select the main and auxiliary equipment for hydro-, pyro-, and electrometallurgical processes in non-ferrous metallurgy, to calculate and predict electro- and metallothermal production of metals and alloys;
- to transform existing technologies to the principles of lean manufacturing and gentle metallurgy;
- to differentiate the modern physico-chemical complex of methods for the analysis of metallurgical raw materials and products, to design powder materials;
- apply modern, advanced knowledge about innovative technologies for obtaining rare, rare-earth and precious metals, light and refractory metals using resource- and energy-saving techniques of technological schemes;
- to rationalize the use of critically important, strategic and man-made raw materials, and to manage metallurgical production waste;
- to prevent and predict structural corrosion problems in the metallurgical industry; to be aware of various types and types of equipment in the field of metallurgy in order to select the most optimal layout schemes and prevent structural problems.
- to program and develop "MES-systems" for collecting and storing data on technological processes in metallurgy.
- systematize the principles of building digital data processing tools, the use of microprocessors in control systems for technical facilities and technological processes, design control systems based on microcontrollers, and develop application software.
- perform an analysis of consumer properties of products made of energygenerating metals and apply statistical methods of quality management at manufacturing enterprises of the metallurgical industry.

have the skills:

- scientific research activities, solving standard scientific problems;
- implementation of educational and pedagogical activities on credit technology of education;
- methods of teaching professional disciplines;

- the use of modern information technologies in the educational process;
- professional communication and intercultural communication;
- public speaking, the correct and logical formulation of their thoughts in oral and written form;
- expanding and deepening the knowledge necessary for daily professional activities and continuing education in doctoral studies.
- formation of a search for economically feasible technologies and methods to reduce emissions of harmful substances into the environment;
- identification and assessment of environmental risks in the conduct of economic activities in the metallurgical industry;
- monitoring of the environmental situation at deposits, processing plants and processing plants;
- determining the impact of technological processes on the ecosystem;
- application of methods to reduce gaseous emissions from metallurgical enterprises, selection of equipment;
- gentle metallurgy in the creation of environmentally friendly production, methods for reducing emissions and waste from metallurgy.

be competent:

- in research and innovation and design activities, in technologies for obtaining energy-generating metals; in the transformation of existing technologies in the field of non-ferrous metallurgy to the principles of gentle, environmentally friendly, integrated processing of raw materials in conditions of depletion of ores and waste, while simultaneously digitalizing production. in adapting technological schemes to the depletion of ores,
- in greening metallurgical industries, efficient recycling of waste from the metallurgical sector,
- in increasing automation and robotization of production, increasing the degree of wear of equipment in the mining and metallurgical sector.
- in matters of modern educational technologies;
- in carrying out scientific projects and research in the professional field;
- in ways to ensure continuous updating of knowledge, expansion of professional skills and abilities.

B - Basic knowledge, skills and abilities

- B1 To know the history and philosophy of science, pedagogy and psychology of management, pedagogy of higher education;
- B2 The ability to independently apply methods and means of cognition, learning and self-control to acquire new knowledge and skills, including in new areas that are not directly related to the field of activity.
- B3 To be proficient in the state language, Russian and one of the most common foreign languages in the industry at a level that ensures human communication.

- B4 Be able to use fundamental general engineering knowledge, the ability to practically use the basics and methods of mathematics, physics and chemistry in their professional activities.
- B5 Proficiency in professional terminology and the ability to work with educational and scientific materials in the specialty in the original in a foreign language. Knowledge of communication and professional terminology.
- B6 General engineering skills, engineering calculations in metallurgy.
- B7 Possession of fundamental knowledge on the theory of mineral processing and metallurgical processes;
- B8 Basic knowledge of waste management, metal recycling.
- B9 planning experiments and processing experimental data
- B12 To know and master the basic business processes in an industrial enterprise, to implement the principles of gentle metallurgy and greening processes.

P - Professional competencies

- P1 is able to evaluate the results of scientific and technical developments, scientific research and justify their own choice, systematizing and summarizing achievements in the metallurgy industry and related fields.;
- P2 Fundamental problems of non-ferrous metallurgy. Apply the basic principles of lean R&D and their use practices to measure the level of readiness of an innovative product/project for commercialization
- P3 Is able to develop proposals to improve the efficiency of the use of raw materials and energy resources in the production of non-ferrous, rare and precious metals:
- P4 Theoretical and technological foundations of processes and technologies for the production of non-ferrous metals and their compounds.
- P5 is able to find and process information required for decision-making in scientific research and in practical technical activities, to carry out modeling, analysis and experiments in order to conduct detailed research to solve complex problems in the professional field.
- P6 Possess the skills to carry out technological, thermal and energy calculations
- P7 Databases, application software packages and computer graphics tools for solving professional tasks
- P8 Be able to calculate and select the main and auxiliary equipment
- P9 Is able to manage resources
- P10 is able to apply professional knowledge to create flexible, multi-purpose and/or energy-saving progressive metallurgical processes and technologies for processing primary and/or secondary raw materials of non-ferrous, rare and precious metals.
- P11 Theoretical and technological foundations of progressive technologies and the latest ways to intensify metallurgical processes for the production of non-ferrous metals
- P12 Is able to carry out research and development work on the subject of the organization.

- P13 Be able to develop energy- and resource-saving technologies in the field of extractive metallurgy
- P14 be able to perform calculations of processes and devices of extractive metallurgy
- P15 apply the principles of gentle metallurgy,
- P16 Is able to develop scientific and technical, design and service documentation, prepare scientific and technical reports, reviews, publications, reviews, design and develop products, processes and systems in conditions of uncertainty and alternative solutions in interdisciplinary fields
- P17 is capable of solving production and (or) research tasks based on fundamental knowledge, knowledge in interdisciplinary fields in the field of metallurgy.
- P 18 is able to evaluate the results of scientific and technical developments, scientific research and justify its own choice, systematizing and summarizing achievements in the metallurgy industry and related fields.
- P 19 Apply the basic principles of lean R&D and the practice of using them to measure the level of readiness of an innovative product/project for commercialization
- P 20 Apply the skills of intellectual property protection and patenting
- P 21 Apply methods of gentle and lean metallurgy in the metallurgy of rare earth and radioactive metals, in the production of rare earth and radioactive metals.

O - Universal, socio-ethical competencies

- O1 is able to use English fluently as a means of business communication, a source of new knowledge in the field of automation or robotization of production processes. I am ready to use English in professional activities in the field of enrichment and metallurgy;
- O2 is able to speak Kazakh (Russian) fluently as a means of business communication, a source of new knowledge in the field of automation or robotization of production processes. I am ready to use Kazakh (Russian) language in professional activities in the field of enrichment and metallurgy;
- O3 to know and apply the fundamentals of applied ethics and ethics of business communication in work and life;
- O4 know and apply the basic concepts of professional ethics;
- O5 to know and solve the problems of human influence on the environment.

C - Special and managerial competencies

- C1 independent management and control of the processes of labor and educational activities within the framework of the strategy, policy and goals of the organization, discussion of problems, reasoning conclusions and competent information management;
- C2 to be a specialist in conducting experimental studies of extractive metallurgy and recycling facilities;

- C3 to be a researcher, a specialist in scientific research of ore processing facilities, extractive metallurgy and recycling;
- C4 to be an engineer for the development and design of metallurgical production lines.
- C 5 to be able to find and process the information required for decision-making in scientific research and in practical technical activities, to carry out modeling, analysis and experiments in order to conduct detailed research to solve complex problems in the professional field.

4. Passport of educational program

4.1. General information

No	Field name	Comments
1	Code and classification of the	7M07 - Engineering, manufacturing and construction industries
	field of education	
2	Code and classification of	7M072 - Manufacturing and processing industries
	training directions	
3	Educational program group	M117 – Metallurgical Engineering
4	Educational program name	7M07201-Automation and digitalization of metallurgical
		processes
	_	The educational program 7M07201 - "Automation and
	program	digitalization of metallurgical processes" includes industry-
		specific, priority, fundamental, natural science, general engineering and professional training of masters in the field of
		automation and digitalization of metallurgical processes related
		to the implementation, operation and modernization of databases
		as the basis for product lifecycle management in relation to
		metallurgical processes.
6	Purpose of EP	The objective of the educational program is to equip students
		with scientific foundations for the development, maintenance,
		and operation of automation systems for metallurgical processes;
		to study and master modern methodologies, technologies, and tools related to the implementation, functioning, and
		modernization of databases as a basis for managing the product
		life cycle in metallurgical processes; to acquire fundamental
		knowledge of sustainable mineral processing technologies; to
		train master's students in basic and specialized disciplines to
		achieve the required competencies; and to automate and manage
		processes in accordance with the ESG concept and sustainable
	T. CED	development goals.
7	Type of EP	Innovative 7
8	The level based on NQF	7
9	The level based on IQF	
	Distinctive features of EP	No
11	1	1) have an idea of: - the role of science and education in public life;
	educational program	- about current trends in the development of scientific
		knowledge;
		– about the professional competence of a high school teacher.
		2) know:
		- the methodology of scientific knowledge;
		- principles and structure of scientific activity organization;
		- the goals and objectives facing a specialist in the field of

		mineral processing and metallurgy for the development and implementation of the latest high-tech production technologies;
		- research methods of processing and metallurgical processes,
		equipment operation.
		3) be able to:
		develop energy- and resource-saving technologies in the field
		of mineral processing, metallurgy and metalworking;
		– develop environmental protection measures for enrichment and
		metallurgical production; –to plan experimental research, choose research methods.
		4) have the skills:
		- scientific research activities, solving standard scientific
		problems;
		– implementation of educational and pedagogical activities on
		credit technology of education;
		– methods of teaching professional disciplines;
		- the use of modern information technologies in the educational
		process;
		professional communication and intercultural communicationbe competent:
		– in the field of scientific research methodology;
		- in the field of scientific and scientific-pedagogical activity in
		higher educational institutions;
		- in matters of modern educational technologies;
		- in carrying out scientific projects and research in the
		professional field; – in ways to ensure continuous updating of knowledge,
		expansion of professional skills and abilities.
12	Learning outcomes of	LO1-Systematize data mining, apply descriptive, correlation and
	educational program	regression analyses, classical calculus of variations and matrix
	F - 8	description of spatial mechanisms.
		LO2-Uses modern control theory: synthesis of systems with a
		given dynamics using standard and relay controllers, digital
		control systems, systems with a variable structure of modal
		control, identification and adaptation of optimal control.
		LO3-Integrate the psychological patterns of managerial activity, training, conducting research, carrying out scientific and
		methodological work
		LO4–Apply modern, advanced knowledge about innovative
		technologies of the metallurgical complex: critical technologies
		in metallurgy, technologies for processing uranium raw
		materials, resource and energy conservation in metallurgy
		(gentle metallurgy), wastewater treatment, nanostructured
		materials production, waste management, digital control systems
		in the metallurgical complex, development of measures aimed at
		improving the efficiency of technological processes
		LO5-Diagnose the reliability of automation systems, carry out
		installation, commissioning, automation and operation of production systems in the metallurgical sector, create automated
		process control systems and robotic technological complexes for
		sustainable pyro- and hydrometallurgical technologies.
		LO6-Demonstrate the skills of teaching and mentoring
		undergraduate students, teaching, conducting research, carrying
		out scientific and methodological work
	I .	I O7-Solve engineering calculations in the field of nyro- and

LO7-Solve engineering calculations in the field of pyro- and hydrometallurgical processes and apparatuses, calculate and predict heat and mass transfer processes, analyze thermal

		regimes, simulate heat exchange of metallurgical units using automation systems, develop measures aimed at improving the
		efficiency of technological processes
		LO8-To develop an experiment and analyze elements of
		automated process control systems.
		· · · · · · · · · · · · · · · · · · ·
		l
		metallurgical processes and products, design powder and composite materials
		LO10-To investigate and make calculations using software on
		thermodynamics and kinetics of metallurgical processes, to
		justify the choice of processes and requirements for the hardware
		design of the technological process.
		LO11-To program and develop "MES-systems" for collecting
		and storing data on metallurgical technological processes.
		LO12-Synthesize skills in management psychology, critical
		thinking, leadership, understanding self-education, personal
		management, teamwork, teamwork, establish professional ethics
		and communication with partners
		LO13-Demonstrate communicative, professional and technical
		language knowledge in English, knowledge of philosophical
		concepts of natural science, scientific worldview.
13	Education form	Full - time
14	Period of training	2 years
15	Amount of credits	120
16	Languages of instruction	Kazakh, russian, english
17	Academic degree awarded	Master of Technical Sciences
18	Developers and authors	Barmenshinova M.B., Chepushtanova T.A.

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

№	Discipline name	Short description of discipline	Amount of													
	-		credits	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
				1	2	3	4	5	6	7	8	9	10	11	12	13
			e of basic disc				•	•		•						
			iversity comp	onen	t .											
	Foreign language	The course is aimed at studying	3			V			v							v
	(professional)	the main problems of scientific														
		knowledge in the context of its														
		historical development and														
		philosophical understanding, the														
		evolution of scientific theories,														
		principles and methods of														
		scientific research in the														
		historical construction of														
		scientific paintings of the world.														
		The discipline will help to master														
		the skills of developing critical														
		and constructive scientific														
		thinking based on research on the														
		history and philosophy of														
		science. At the end of the course,														
		undergraduates will learn to														
		analyze the ideological and														
		methodological problems of														
		science and engineering and														
		technical activities in building														
		Kazakhstan's science and the														
		prospects for its development.														
HUM214I	Psychology of management	The course is aimed at mastering	3			v			v						v	
		the tools for effective employee														
		management, based on														
		knowledge of the psychological														
		mechanisms of the manager's														
		activity. Discipline will help you														

	master the skills of making decisions, creating a favorable psychological climate, motivating employees, setting goals, building a team and communicating with employees. At the end of the course, undergraduates will learn how to resolve managerial conflicts, create their own image, analyze situations in the field of managerial activity, as well as negotiate, be stress-resistant and effective leaders.							
HUM212 History and philosophy of science	Purpose: to explore the history and philosophy of science as a system of concepts of global and Kazakh science. Content: the subject of philosophy of science, dynamics of science, the main stages of the historical development of science, features of classical science, non-classical and post-non-classical science, philosophy of mathematics, physics, engineering and technology, specifics of engineering sciences, ethics of science, social and moral responsibility of a scientist and engineer.	3		V			V	v
HUM213 Higher school pedagogy	The course is aimed at mastering the methodological and theoretical foundations of higher education pedagogy. The discipline will help to master the skills of modern pedagogical	3		v			v	V

		technologies, technologies of										
		pedagogical design, organization										
		and control in higher education,										
		skills of communicative										
		competence. At the end of the										
		course, undergraduates learn how										
		to organize and conduct various										
		forms of organizing training,										
		apply active teaching methods,										
		and select the content of training										
		sessions. Organize the										
		educational process on the basis										
		of credit technology of										
		education.										
			e of basic disc									
			mponent of c	hoice							-	
	Calculations of pyro- and	Acquisition of knowledge by	5				v	v		v	v	
	hydrometallurgical processes	master's on the basic calculations										
	and apparatuses	of pyrometallurgical processes,										
		taking into account resource and										
		energy saving, selection and										
		calculation of the main and										
		auxiliary equipment, taking into										
		account the innovativeness of										
		modern designs. Calculations of										
		hydrometallurgical processes and										
		apparatuses of the main modern										
		technologies of leaching and										
		extraction processes included in										
		"gentle metallurgy".										
MET289	Theory and calculations of	Purpose: To study the theory and	5			v		v		v		
		calculations of metallurgical								·		
	and kinetics	thermodynamics and kinetics										
		Content: The processes occurring										
		in metallurgical systems are										
		considered from the positions of										
		thermodynamics and kinetics.										
	<u> </u>	mornio a judinio ana kinotios.										

	The characteristics of equilibrium and nonequilibrium processes and States of metallurgical systems are given. Theoretical positions and conclusions about the structure and properties of metal, oxide and sulfide systems. Basic calculations on thermodynamics and kinetics of metallurgical processes. Calculation of thermodynamic and kinetic parameters using modern digital programs (software) for calculations.								
Sustainable development strategies	Purpose: To train graduate students in sustainable development strategies to achieve a balance between economic growth, social responsibility, and environmental protection. Content: Graduate students will study the concepts and principles of sustainable development, the development and implementation of sustainable development strategies, the evaluation of their effectiveness, and international standards and best practices. Cases and examples of successful sustainable development strategies are included.	5	V			V			V
Special chapters of heat exchange of metallurgical processes	The aims and objectives of the course is the acquisition of knowledge and skills by	5		V	V		v		

		undergraduates on the main					
		processes of heat transfer of					
		metallurgical processes, types of					
		heat transfer. Study of the					
		process of thermal conductivity,					
		the influence of various factors					
		on the coefficient of thermal					
		conductivity. Calculations of					
		stationary problems on thermal					
		conductivity through a single-					
		layer, flat, cylindrical and					
		spherical wall. Study of the main					
		processes in convective heat					
		flow. The study of heat transfer					
		through the process of radiation.					
		Performing calculations for					
		complex heat transfer. Methods					
		for solving problems of non-					
		stationary heat conduction.					
		Theory of heating thin and					
		massive bodies.					
MEI230	Theory and calculations of	The purpose of the course: the	5	\ \ \ \ \ \		v	
	metallurgical thermodynamics		3	'		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	and kinetics	ideological ideas about					
	and kinetics	methodology as a branch of					
		intellectual activity, one of the					
		functions of which is the					
		implementation of mutually					
		enriching links between					
		disciplines of various levels of					
		generalization; the study of					
		methodological principles and					
		approaches to scientific research;					
		the formation of methodological					
		and scientific culture, flexible					
		perception of scientific texts. The					
		subject and basic concepts of					
		subject and basic concepts of					

				1	1		1		-		 _		
		modern methodology of science. Scientometrics and the use of the main publication databases (SCOPUS, WoS).											
AUT205	Diagnostics and reliability of automation systems	The content of the discipline includes the characteristics of qualitative and quantitative indicators of the reliability of technical systems, their probabilistic and statistical evaluation based on test results, the study of the main methods for calculating the reliability of recoverable and non-recoverable systems, the analysis of the need and the choice of the redundancy rate, consideration of methods and models of technical diagnostics of automation systems.	5		v			Y				V	
MNG781	Intellectual property and research	The purpose of this course is to provide undergraduates with the knowledge and skills necessary to understand, protect and manage intellectual property (IP) in the context of scientific research and innovation. The course is aimed at training specialists who can effectively work with IP, protect the results of scientific research and apply them in practice.	5			Y				,			v
		Cycle University comp	e of profile dis conent and Co			of cho	oice						
AUT700	The reliability of the management system and its elements	The discipline "Reliability of the control system and its elements" examines the basic terms,	5	v	V			V					

		definitions and concepts in the theory of reliability, quantitative indicators of the reliability of renewable and non-renewable technical systems, the main methods for calculating the reliability of complex systems, types of tests for reliability, backup issues and determining the reliability of backup systems. To consolidate the theoretical materials, standard tasks are presented. As well as issues of reliability of automation and control systems.									
AUT237	Digital control systems	The content of the discipline "Digital Control Systems" includes the study of the mathematical apparatus for describing digital systems, describing digital systems in the time and frequency domains, and synthesizing digital controllers in the automation of production processes. Obtaining knowledge about the principles of construction and features of the use of digital control systems in industry.	5	v	v				v	v	v
	Stable pyro - and hydrometallurgical technologies of processing of mineral raw materials	The aims and objectives of the course are to acquire knowledge and skills for undergraduates in sustainable pyrometallurgical technologies for processing mineral raw materials: the study of energy saving in pyroprocesses: flash smelting for	5				V	V		v	

		1							 		
		matte production, matte refining									
		processes and converting to									
		obtain blister copper,									
		metallothermic processes. Study									
		of sustainable hydrometallurgical									
		technologies for the processing									
		of mineral raw materials: the									
		influence of diffusion									
		propagation on the dissolution									
		potential in mineral raw material									
		leaching systems; underground									
		leaching of rare earth elements,									
		biohydrometallurgy technologies									
MET766	Resource and energy saving in	Acquiring knowledge by master's	5		v	v		v			
	metallurgy (gentle metallurgy)										
	83 (8	metal, based on saving resources									
		and preserving the environment,									
		on modernizing the equipment of									
		enterprises that ensure the									
		preservation of the priorities of									
		ecology and resource saving in									
		metallurgy, lean production,									
		familiarity with a wide cross-									
		functional base about various									
		types and types of equipment in									
		the field of metallurgy for									
		selection the most optimal									
		schemes for their layout.									
MET298	Methods and means of analysis		5		v	v		v	v		
	of metallurgical processes and										
	metallurgical products	state and development of									
		methods for analyzing MT.									
		Methods for measuring electrical									
		conductivity; methods for									
		studying the equilibrium of									
		chemical reactions in									
		metallurgical systems. Along									
L	1			 		·	 		 	I	

	with the theoretical foundations of analysis methods, a description is given of installations and instruments used for research in laboratory and production conditions.						
Theory and technology of nanostructured materials	The aims and objectives of the course are to acquire undergraduate knowledge on the basics of nanotechnology in metallurgy and classify processes, to study the types of nanomaterials: consolidated nanomaterials, nanosemiconductors, nanopolymers, nanobiomaterials, fullerenes and tubular nanostructures, catalysts, nanoporous materials and supramolecular structures. Study of technologies for obtaining nanoparticles (nanopowders), determination of the properties of nanopowders, determination of the use of nanopowders in industries. Natural boundaries of the development of existing microelectronics.	5	v	V		v	
Waste management of metallurgical industry	The aims and objectives of the course is to acquire undergraduate knowledge on the basics of waste management in the metallurgical industry, to study the classification of metallurgical waste. Studying the safe disposal and disposal of waste, determining the disposal	5	v		v	v	

	of waste without causing harm to public health and damage to the environment. Waste disposal at the expense of the manufacturer. Physico-chemical, technological and environmental aspects of processing the most typical types of waste from the metallurgical industry. Selection and justification of technological schemes for the processing of metal-containing waste.								
Treatment of waste water of metallurgical enterprises	The course includes methods of wastewater treatment, the concept of environmental safety of the metallurgical industry. The problem of wastewater formation. The mechanical method and the reagent for chemical cleaning of industrial wastewater treatment. Nonchemical methods: electrochemical, electronicaly, the use of ion exchange resins, ozonation. Methods of mechanical cleaning. Device for mechanical treatment: grates, drum grid, sedimentation basins, filters, sologirlsmasturbating etc.	5			v			v	
Optimal control systems (with AI elements)	The content of the discipline "Optimal control systems" includes the study of mathematical methods of optimal control based on classical calculus of variations, the basics of the maximum principle and the method of dynamic	5	V	v		V			

		programming. Models and methods of program and stabilizing optimal control are considered. Methods of synthesis of intelligent optimal control systems are considered separately.									
AUT707	Distributed Control Systems	The content of the discipline "Distributed control systems" deals with the choice of structure and composition of hardware and software for distributed control systems. A distributed control system (DCS, DCS - Distributed Control System) can be defined as a system consisting of many devices spaced apart in space, each of which is independent of the others, but interacts with them to perform a common task. The maximum benefits of a distributed system are achieved when controllers work autonomously, and the exchange of information between them is minimized.	5	v			v			V	
AUT285	Modern executive devices of automation systems	The course content discusses general issues of the theory of automation actuators, outlines the principles of classification of actuators and their main characteristics, as well as issues related to actuators as an element of an automation system. The main purpose of the training is to teach the ability to correctly select installation devices in	5		V		v		Y		

		automation systems											
AUT701	Automation of control systems design		5	V	V				v		v		
MEI242	The electrolysis of aqueous and non-aqueous media	Purpose: Formation of knowledge on the basics of electrometallurgical and electrochemical processes and the skills of their application in metallurgy. Contents: Electrolysis of aqueous and non-aqueous media" examines the laws, theoretical provisions and examples of the practical application of electrolysis in metallurgical practice. Systematic ideas about the theoretical foundations and methods of modern electrochemical methods for extracting metals from aqueous solutions and salt melts are being formed.	5		V			v		v			
MET767	Construction of powder and composite materials	The aims and objectives of the course are to acquire undergraduate knowledge on the	5		V	,	r			v		v	

	rational design of powder and composite materials, on the development of technical solutions for the manufacture of parts and assemblies, taking into account new production challenges that can ensure the maintenance of outdated equipment in production. Development of materials with targeted physical and chemical properties for the tasks of the enterprise, development of new powder and composite materials with the required physical and technical properties.									
Microprocessor control systems of technological processes	The use of microprocessors in the management of distributed systems as a means of collecting and primary processing, transmission, transformation, as well as controllers of technological processes has expanded the functionality of sensors, actuators, peripheral and terminal devices. This course discusses the issues, the study of which will give undergraduates the basic knowledge and skills necessary to solve industrial and scientific problems related to the choice of microprocessor control systems.	5		V	V		V		V	
Modern technologies of rare, rare earth and precious metals	Modern technologies of rare metals: industrial schemes for the production of tungsten, molybdenum, rhenium;	5		v		V		V	V	

development of new and						
improvement of existing						
technologies; industrial schemes						
for the production of titanium,						
tantalum, niobium, zirconium,						
hafnium. Industrial schemes for						
the production of rare earth						
metals (REM). Strategy for						
finding new and improving						
existing technologies. Industrial						
schemes for the production of						
noble metals. Analysis of the						
process/technology for the						
production of precious metals.						
Selection and justification of the						
direction of process/technology						
improvement.						

5. Curriculum of educational program

NON-PROFIT JOINT STOCK COMPANY "KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY NAMED AFTER K.I. SATBAYEV"

«APPR OVED»
Decision of the Academic Council
N PJSC«KazNRTU
named after K.Satbayev»
dated 06.03.2025 Minutes № 10

WORKING CURRICULUM

Academic year 2025-2026 (Autumn, Spring)

Group of educational programs M117 - "Metallurgical Engineering"

Educational program 7M07201 - "Automation and digitalization of metallurgical processes"

The awarded academic degree

Form and duration of study

Discipline				Total	Total	lek/lab/pr	in hours	Form of	Allocatio	on of face-to- courses an	face training d semesters	based on	
æde	Name of disciplines	Block	Cycle	ECTS credits	hours	Contact	SIS (including TSIS)	control	1 co	urse	2 e	ou rse	Prerequisite
				creams		110013	13139		1 sem	2 sem	3 sem	4 sen	1
	C	CLE	OF GEN	NERAL E	DUCAT	TON DISC	CIPLINES (GE	ED)					
			CYCL	E OF BA	SIC DI	SCIPLINE	S (BD)						
			M	I-1. Mod	ule of b	asic traini	ng	27		7.0		90.4	-0.0
LNG213	Foreign language (professional)		BD, UC	3	-90	0.0/30	60	Е	3				
HUM214	Psychology of management		BD, UC	3	90	15/0/15	60	Е	3				
MET765	Calculations of pyro- and hydrometallurgical processes and apparatuses	1	BD, CCH	5	150	30/0/15	105	Е	5				
MET289	Theory and calculations of metallurgical thermodynamics and kinetics	1	BD, CCH	5	150	30/0/15	105	E	5				
MNG782	Sustainable development strategies	1	BD, CCH	5	150	30/0/15	105	E	5				
MET290	Special chapters of heat exchange of metallurgical processes	2	BD, CCH	5	150	30/15.0	105	Е	5				
MET230	Technologies of processing of uranium-containing raw materials	2	BD, CCH	5	150	30/0/15	105	E	5				MET223, MET117
HUM212	History and philosophy of science		BD, UC	3	90	15/0/15	60	E		3			
HUM213	Higher school pedagogy		BD, UC	3	90	15/0/15	60	E		3			
AUT205	Diagnostics and reliability of automation systems	1	BD, CCH	5	150	30/0/15	105	Е			5		AUT166
MNG781	Intellectual property and research	1	BD, CCH	5	150	30/0/15	105	E			5		
			M	l-3. Prac	tice-orie	nted mod	ile		9.0			55	
AAP273	Pedagogical practice		BD, UC	8	y			R			8		
		(CYCLE	OF PRO	FILE D	ISCIPLIN	ES (PD)						
			M-2.	Module	of profe	ession al a c	tivity						
AUT700	The reliability of the management system and its elements		PD. UC	5	150	30/0/15	105	Е	5				AUT112
AUT237	Digital control systems		PD, UC	5	150	30/0/15	105	Е	5				AUT102
MET293	Stable pyro - and hydrometallurgical technologies of processing of mineral raw materials		PD, UC	5	150	30/0/15	105	Е		5			
MET766	Resource and energy saving in metallurgy (gentle metallurgy)		PD, UC	5	150	30/0/15	105	Е		5			
MET291	Waste management of metallurgical industry	1	PD, CCH	5	150	30/0/15	105	E		5			
MET292	Treatment of waste water of metallurgical enterprises	1	PD, CCH	5	150	30/0/15	105	Е		5			
AUT705	Optimal control systems (with AI elements)	2	PD, CCH	5	150	30/0/15	105	Е		5			AUT268
AUT707	Distributed Control Systems	2	PD, CCH	5	150	30/0/15	105	E		5			AUT268

										60	6	0	
	Total based o	m UNIVE	RSITY:						30	30	30	30	
ECA212	Registration and protection of the master thesis		FA	8								8	
	2	180	M-:	5. Modu	ale of fin	al attestatio	on		200				
AAP255	Research work of a master's student, including internship and completion of a master's thesis		RWMS	14				R				14	
AAP251	Research work of a master's student, including internship and completion of a master's thesis		RWMS	2				R			2		
AAP268	Research work of a master's student, including internship and completion of a master's thesis		RWMS	4				R		4			
AAP268	Research work of a master's student, including internship and completion of a master's thesis		RWMS	4				R	4				
			M-4.	Experi	mental r	esearch mod	lule						
AAP256	Research practice		PD, UC	4				R				4	
			M	3. Prac	tice-orie	nted modul	e						
MEI223	Modern technologies of rare, rare earth and precious metals	1	PD, CCH	4	120	30/0/15	75	E				4	
AUT286	Microprocessor control systems of technological processes	1	PD, CCH	4	120	15/15/0	90	E				4	ELC 16
MET767	Construction of powder and composite materials	3	PD, CCH	5	150	30/0/15	105	Е			5		
MEI242	The electrolysis of aqueous and non-aqueous media	3	PD, CCH	5	150	30/15/0	105	Е			5		MET22
AUT701	Automation of control systems design	2	PD, CCH	5	150	30/0/15	105	E			5	S. S.	AUT16
AUT285	Modern executive devices of automation systems	2	PD, CCH	5	150	15/15/15	105	E			5		AUT10
MET297	Theory and technology of nanostructured materials	1	PD, CCH	5	150	30/15/0	105	E			5		
MET298	Methods and means of analysis of metallurgical processes and metallurgical products	1	PD, CCH	5	150	30/15/0	105	E			5		

Number of credits for the entire period of study

Cycle code	Cycles of disciplines	Credits											
Cycle code	Cycles of discipanes	Required component (RC)	University component (UC)	Component of choice (CCH)	Total								
GED	Cycle of general education disciplines	0	0	0	0								
BD	Cycle of basic disciplines	0	20	15	35								
PD	Cycle of profile disciplines	0	24	29	53								
	Total for theoretical training:	0	44	44	88								
RWMS	Research Work of Master's Student				24								
ERWMS	Experimental Research Work of Master's Student				0								
FA	Final attestation				8								
	TOTAL:				120								

Decision of the Educational and Methodological Council of KazNRTU named after K.Satpayev. Minutes No. 3 dated 20.12.2024

Decision of the Academic Council of the Institute. Minutes No 4 dated 12.12.2024

Signed:	
Governing Board member - Vice-Rector for Academic Affairs	Uskenbayeva R. K.
Approved:	
Vice Provost on academic development	Kalpeyeva Z. Б.
Hand of Department - Department of Educational Program Management and Academic-Methodological Work	Zhumagaliyeva A. S.
Director - Mining and Metallurgical Institute named after O.A. Baikonurov	Rysbekov K
Department Chair - Metallurgy and mineral processing	Barmenshinova M
Representative of the Academic Committee from EmployersAcknowledged	Ospanov Y. A.

